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Abstract

In this paper, a new and efficient algorithm is developed for attitude determination from Global

Positioning System signals. The new algorithm is derived from a generalized nonlinear predictive filter

for nonlinear systems. This uses a one time-step ahead approach to propagate a simple kinematics

model for attitude determination. The advantages of the new algorithm over previously developed

methods include: it provides optimal attitudes even for coplanar baseline configurations; it guarantees

convergence even for poor initial conditions; it is a non-iterative algorithm; and it is computationally

efficient. These advantages clearly make the new algorithm well suited to on-board applications. The

performance of the new algorithm is tested on a dynamic hardware simulator. Results indicate that the

new algorithm accurately estimates the attitude of a moving vehicle, and provides robust attitude

estimates even when other methods, such as a linearized least-squares approach, fail due to poor initial

starting conditions.
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Introduction

Phase difference measurements from Global Positioning System (GPS) signals provides a novel

approach to determine the attitude of a vehicle. This approach has been successfully applied to air, _ sea,'

and space 3"4 based vehicles. The problem of finding the attitude of a vehicle using GPS signals

essentially involves a two-step process. First, since phase differences are used, the correct number of

integer wavelengths between a given pair of antennas must be found. This problem can generally be

solved using static integer searches or using motion based techniques. Much attention has been placed

on resolving the integer ambiguity problem over many years (e.g., see Refs. [5-6]). Once the integer

ambiguities are resolved, then the attitude problem must be solved. The solution to this problem poses a

difficult task, and has just recently gained attention in the research community.

The most widely used techniques for attitude determination involve methods that solve Wahba's

problem. 7 This problem involves finding a proper orthogonal matrix that minimizes the scalar weighted

norm-squared residual between sets of 3 x 1 body vector observations and 3 x 1 inertial observations

mapped into the body frame. Many methods have been developed that solve this problem accurately

and efficiently (e.g., see Refs. [8-9]). However, the GPS observation is not in the form of a vector

observation, so f'mding the attitude using GPS signals is inherently more difficult.'°

Minimizing the GPS loss function can be accomplished by using non.linear least-squares or gradient°

based search techniques. However, these methods may require a large number of iterations to converge,

and are not efficient. _ Cohen's linearized approach _2 involves finding a small angle rotation which

maps an initial attitude estimate to the desired attitude matrix. This approach works well for a good

initial guess, but is not guaranteed to converge to the correct solution for large initial errors. Other

methods convert the GPS loss function into Wahba's form. _°'_3 The transformation has been shown to be

exact only when the baselines or sightlines form an orthonormal basis. Significant errors may arise if

this condition is not true. An extreme example of this scenario is when three baselines are coplanar.

In this paper, a new and efficient algorithm is derived which determines the attitude using GPS

observations. The new algorithm is based on a predictive filter scheme for nonlinear systems first

introduced by Crassidis and Markley. j4 This scheme uses a recursive (one time-step ahead) method to

"predict" the required model error so that the propagated model produces optimal estimates. The filter

developed in this paper is essentially reduced to a deterministic approach, since the corrections required



to update the model are not weighted in the loss function. The specific name of the new algorithm using

GPS signals is ALLEGRO (Attitude-Lean-Loping-Estimator, using GPS Recursive Operations). The

main advantages of the ALLEGRO algorithm over previously developed methods are:

1) The algorithm is not iterative.

2) It always converges to the correct solution provided that there is a minimum number of baselines

and sightlines.

3) The algorithm is easy to implement.

An attitude error covariance expression from the general GPS loss function has been developed by

Crassidis and Markley. 1° It will be shown that the ALLEGRO algorithm produces estimates that have

exactly the same error covariance provided that the observation sampling is fairly frequent. Therefore,

the ALLEGRO algorithm minimizes the general GPS loss function.

The organization of this paper proceeds as follows. First, the concept of the GPS phase difference

observation is introduced. Then, the general loss function used for GPS-attitude determination is

reviewed. Next, for completeness the optimal attitude error covariance derivation is shown. Then, the

generalized predictive filter for nonlinear systems is reviewed, followed by an application of this scheme

to the GPS loss function. Also, an attitude error covariance expression is derived for the predictive

attitude determination algorithm. Finally, the algorithm is tested using a GPS hardware simulator.

Background

In this section, a brief background of the GPS phase difference measurement is shown. The main

measurement used for attitude determination is the phase difference of the GPS signal received from two

antennas separated by a baseline. The wavefront angle and wavelength are used to develop a phase

difference, as shown in Figure 1. The phase difference measurement is obtained by

blCOSO= 2(A¢-n) (1)

where bl is the baseline length (in cm), 0 is the angle between the baseline and the line of sight to the

GPS spacecraft, n is the number of integer wavelengths between two receivers, ,,x,# is the phase

difference (in cycles), and 2, is the wavelength (in cm) of the GPS signal. The two GPS frequency

carriers are L1 at 1575.42 MHz and L2 at 1227.6 MHz. As of this writing, non-military applications



generally use the L I

expressedby

frequency. Then, assumingno integer offset, the phase difference A_ can be

Aqk = b_TA s (2)

where s _ 9t 3 is the normalized line of sight vector to the GPS spacecratt in an inertial frame, b _ 913 is

the baseline vector in wavelengths, which is the relative position vector from one antenna to another, and

A is the attitude matrix, which is an orthogonal matrices with determinant 1 (i.e., ATA = 1).

Attitude determination using GPS signals involves finding the proper orthogonal matrix A that

minimizes the following generalized loss function

m n •

= Asj) (3)
i=1 j=l

where m represents the number of baselines, n now represents the number of observed GPS spacecrat_,

A_ denotes the phase difference measurement, and cr/j denotes the standard deviation of the /jth

measurement error, which is assumed to be a zero-mean stationary Gaussian process. The standard

deviation is 0.5 cm/2 = 0.026 wavelengths for typical phase noise. 12

A convenient parameterization of the attitude matrix is the quatemion representation, def'med ast5

q-I q13 ] (4)
- Lq4J

with

[ql-ql3 --- q2 =_sin(O/2) (5a)

q3

q4 = cos(0 / 2) (5b)

where e__"is a unit vector corresponding to the axis of rotation and is the angle of rotation. The

quaternion satisfies a single constraint, given by

qTq = qlr3 q13 + q42 = 1 (6)



The attitude matrix is related to the quaternion by

with

L J

L J

The 3 x 3 matrix [q13 x] is referred to

(7)

(8a)

(8b)

where I3x3 is a 3 x 3 identity matrix.

since a x b = [a x]_b, with

[ax]- a 3 0 -a 1 (9)

-a 2 a I 0

From Equation (3) it is clear that the quaternion representation leads to a loss function that is quartic in

the quaternions. This is not equivalent to the familiar attitude determination loss function posed by

Wahba. 7 In fact, a conversion to Wahba's problem has been shown be optimal only when the baselines

or sightlines form an orthonormal basis. _° Therefore, in general, the GPS loss function poses a more

difficult problem to solve than the standard vector-observation loss function in Wahba's problem.

An attitude error covariance can also derived from the GPS loss function in Equation (3). This is

accomplished by using results from maximum likelihood estimation, t°'_6 The Fisher information matrix

for a parameter vector x is given by

Fxx = ,yx_,,T J(X) (I0)
_X__rue

where E{ } denotes expectation, and J(x) is the negative log likelihood function, which is the loss

function in this case. If the measurements are Gaussian and linear in the parameter vector, then the error

covariance is given by

as cross product matrix



Now, theattitudematrix is approximatedby

= (1 l)

where 8a represents a small angle error (for the quatemion 28ql 3 _8a).

(12)

Equation (12) is next

substituted into Equation (3) to determine the Fisher information matrix. First-order terms vanish in the

partials, and third-order terms are small because we assume the probability distribution to be

approximately symmetric about the mean. Also, assuming that the quarti¢ terms are negligible (see [17]

for a Gaussian approximation to fourth-order terms) leads to the foliowing form for the optimal

covariance

Note that the optimal covariance requires knowledge of the attitude matrix. However, if the baselines

are non-coplanar then the optimal covariance can be determined ,without the attitude knowledge. '°

There are a number of methods available to minimize the GPS loss function shown in Equation (3),

including the standard parameter optimization techniques, such as the gradient method. 's However,

these methods are usually computationally inefficient. A more practical approach uses a linearized least-

squares method. '2 This begins by performing a first-order linearization about a nominal attitude, so that

A= Ao(13×3 +[80x]) (14)

where A 0 represents some nominal attitude, and 80 represents a small angle correction. Then, defining

a perturbation equation for the phase difference measurement leads to

8_ = AT- a40 = srA0r[b x]80 + v - h l" 80 + v (15)

where v representsthe Gaussian measurement noise. Equation (I5) representsa linearizedsensitivity

equation between the measured differential carder phase and the perturbation to the initial attitude guess.

All available differential phase measurements can be stacked into a single linearized vector equation,

given by

6



Lh_  J

8qk = HSO+ v (16b)

Therefore, Equation (16b) can be used to find a least-squares estimate of the attitude from the nominal

attitude. In practice, the solution is usually obtained iteratively by using the previous epoch as an initial

-1
Also, it is easy to see that (HTR-IH) is equivalent to the attitude error covarianceguess. expression

in Equation (1 3), where R is the diagonal covariance matrix of the measurement error process v. The

linearized approach provides an efficient method for attitude determination; however, it is sensitive to

the initial attitude guess, which may cause divergence problems (as will be shown).

Predictive Attitude Determination

In this section, the ALLEGRO algorithm is derived using a nonlinear predictive approach. First, a

brief review of the nonlinear predictive filter is shown (see Ref. [14] for more details). Then, the filter

algorithm is reduced to a deterministic-type approach for attitude determination. Finally, a covariance

expression for the attitude errors using the ALLEGRO algorithm is derived.

Predictive Filtering

In the nonlinear predictive filter it is assumed that the state and output estimates are given by a

preliminary model and a to-be-determined model error vector, given by

__(t) = f_(_(t), t)+ G(t)d(t) (1 7a)

33(t) = c(_(t), t) (1 7b)

where f e _P is the model vector, _(t) _ _P is the state estimate vector, d(t) _ 9t l is the model error

vector, G(t)_9_ p×I is the model-error distribution matrix, c e9t m is the measurement vector, and

_t) a 9t m is the estimated output vector. State-observable discrete measurements are assumed for

Equation (17b) in the following form

= +v(tk)  18)



where y___(tk)e'.R m is the measurement vector at time tk, x(tk)_91 p is the true state vector, and

v(tk) _ _R'n is the measurement noise vector which is assumed to be a zero-mean, stationary, Gaussian

white-noise distributed process with

E{v(tk)}=O (19a)

where R _ _tlmxrn is a positive-definite covariance matrix.

A loss functional consisting of the weighted sum square of the measurement-minus-estimate

residuals plus the weighted sum square of the model correction term is minimized, given by

J= l {_(tk+l)-__(tk+l)} T R -1 {_(tk+l)-_(tk+l)} *l dT(tk) W d(,k) (20)

where W _ _RTM is weighting matrix. The necessary conditions for the minimization of Equation (20)

lead to the following model error solution

-I

d(tk) =-{[A(M)S(*k)] TR-1A(At)S(x-k)+ W} [A(At)S(,k)] TR-l[g(x-k,At)-_(tk+l)+J3(tk) ] (21)

where -_k- x'(a), At is the measurement sampling interval, S(g)_t mxl is a generalized sensitivity

matrix, and A(At) e ffl mxm is diagonal matrix with elements given by

At pl
2ii = _ i = 1,2,...,m (22)

pi !'

where Pi, i= 1,2,...,m, is the lowest order of the derivative of ci(x-(t)) in which any component of d(t)

first appears due to successive differentiation and substitution for _ci(t ) on the fight side. The ith

component of z(_ At) is given by

PJ Atk L_ Ic "
zi(g At ) = _-_--i77. ft i)

k=!

where Ly(ci) is the k th Lie derivative, defined by

(23)
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fork>l

(24)

The i th row of S(__) is given by

si={Lg,[LPf-l(ci)],...,Lgt[L_-l(ci)]}, i = 1,2,...,m (25)

where gj is the jth column of G(t), and the Lie derivative is defined by

D_ gJ' j = 1,2 .... ,l (26)

Equation (26) is in essence a generalized sensitivity matrix for nonlinear systems. Therefore, given a

state estimate at time tic, then Equation (21) is used to process the measurement at time tk+ 1 to find the

d(tk) to be used in [tk,tk+l] to propagate the state estimate to time tk+ 1. The weighting matrix W serves

to weight the relative importance between the propagated model and measured quantities. If this matrix

is set to zero, then no weight is placed on minimizing the model corrections so that a memoryless

estimator is given.

ALLEGRO Algorithm

In the ALLEGRO algorithm it is assumed that the model is given by the quaternion kinematics

model. This algorithm requires no dynamics model; it assumes that the attitude rate is adequately

modeled by a constant model error d between measurements, so that

where _ denotes the determined quatemion. Since the phase difference measurements are used as the

required tracking trajectories, the output vector in Equation (18) is given by (dropping the subscript /j

for the moment)

c(_) = bTA(_q)s (28)

The lowest order time derivative of _ in Equation (28) in which any component of d first appears in

Equation (27) is one, so that Pi = 1. For a deterministic attitude solution (i.e., a memoryless approach)



the weighting matrix

beshownto begivenby

W is set to zero in Equation (21). The remaining quantities in Equation (21) can

A = At 13×3 (29a)

7.__x,].AT, , (29b)

(29c)
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(32a)

where

..., -"ACm.] (29d)

R=diag[o'll ' ..., O'mn ] (29e)

z(_k, _ ) = 0 (29t")

where the superscript ,5 denotes that the quantity is measured at time tk+ 1 (all other quantities in these

equations are at time tk). Therefore, the following model error equation is developed

d(lk) m__dk =- I O'_2[A#x]bib__T[A#x] T ZZO'_2[A#x]bi{ATi_-bTA#} (30)

"= "= i=1 y=l

It should be noted that Equation (30) represents an exact linearization for an interval At. 19 However, for

practical applications the sampling interval should be well below Nyquist's limit. :° The determined

quaternion can be found by integrating Equation (27) from time t k to tk+ 1. Since d is assumed constant

over this interval, a discrete propagation for Equation (27) can be used, given by

t_k+l = [,/_k/4×4 + yk_-2(ek)]_ k (31)



:k (32b,
yk (32c,

e_=-d*/I-d_ll (32d)

In order to derive an attitude error covariance from Equation (27), a propagated expression can be

derived using a similar approach found in Ref. [21]. The attitude error equation is given by

8a=-[_a×]8,_+sa

where &/is a model errorperturbation.The discretepropagation isgiven by

8ak+1 = % 8ak + rk_k

(33)

(34)

where

_k = e-[-a×] at (35a)

F k = I_te -[dx]t art (35b)

Next, the true output is given by using a first-order expansion in the predictive filter output, t4 so that

where ,_ and

respectively. Therefore, the model error is given by

1

-_=-aTx&__-_, +v_+,+,,,s_a, ')

where

Y-k+l = Y-k + AtSk dk +-vk+l (36)

correspond to true quantities of S from Equation (29b) and _d from Equation (21),

Kk =_(sTR-ISk)-IsT8 -1

Next, using a small angle perturbation in the attitude matrix, similar to Equation (12), leads to

(37)

(38)

(39)

I1



Now if 6ct k

used

is small, using the right-hand side of Equation (29b), the following approximation can be

Therefore, since K k S k = 13× 3 , the model error equation is now given by

= + +

Using the fact that 6d k = dk --dk leads to the following error angle equation

e%+z= % aak - rk aak/_t- rk x, ___k+l/_t+rk [aSk,,]aak

(40)

(41)

(42)

If At is small, as assumed in this approach (i.e., the sampling interval is well within Nyquist's limit,

[_-k [At < n'/10),2° then the quantities in Equation (35) can be approximated adequately by

_k _ (I3x3-At[aSk x]) (43a)

F k = At/3x3 (43b)

Substituting these quantities into Equation (42) leads to

6ak+ 1 _. -K k Vk+ 1 (44)

The cancellation of the terms in 6a k reflects the fact that setting W = 0 in Equation (21) gives a

memoryless estimator. Now the attitude error covariance is given by

Pk+l - E{6ak+l 6a_'+l} = Kk RKT (45)

Therefore, from the definitions of S k , K k , and R, the attitude error covariance expression for the

ALLEGRO algorithm becomes

?k+l= or/')2A k s)× bib a k x (46)

Note that the attitude matrix in Equation (46) is evaluated at time t k and that the sightlines are given at

time tk+ I. This may be simplified by using the following attitude propagation which is valid for small

At

12



=(, x3- ×])A(q_',)

The inverse recursion for A(__k) can be adequately approximated by

Substituting Equation (48) into Equation (46) leads to

-2 A A T
Pk+l _ or# {__/j }{__# } (49)

Li=l j=l

where

The term in Equation (49) that involves [_dk x] is typically three orders of magnitude less than the term

that doesn't involve [_d/,×], and the term that is quadratic in [_dk x] is typically six orders of magnitude

less than the term that doesn't involve [_dk x]. Thus, Equation (49) reduces down to

r 1rE j]l&+l = o-_z A(_,+,..)4× .b,b_ .a(_k+l)4× (51)

k_:17:_

Therefore, the attitude error covariance at time tk is given by

_:1 j=l

This expression is equivalent to the optimal covariance shown by Equation (13). Therefore, the

ALLEGRO algorithm is in essence equivalent to solving the generalized loss function in Equation (3).

Although the approximation in Equation (52) is valid only for small At, this poses no problem for

typical on-board applications (e.g., for a typical vehicle in low-Earth orbit undergoing motion of one

revolution-per-orbit, a sampling interval of 100 seconds is more than sufficient for Equation (52) to be a

valid approximation). Also, the inverse in Equation (30) is sufficient to determine Pk+I, as shown by

13



Equation (46)-(51). Theretbre, the ALLEGRO algorithm inherently computes the attitude error

covariance as part of its solution. Finally, Ref. [22] shows an analysis of robustness with respect to

initial condition errors. It is shown that the estimated error in predictive filter is always bounded for any

initial condition, which makes the ALLEGRO more robust than a linearized least-squares algorithm.

There are many advantages of the ALLEGRO algorithm over previous methods. These advantages

include:

1) The ALLEGRO algorithm can provide estimates even when the baselines are coplanar, which is

an advantage over the methods shown in Refs. [10] and [13] that convert the GPS problem into a

form equivalent to Wahba's problem. Also, it has been shown in Ref. [10] that the attitude of a

vehicle can be determined with a minimum of two baselines and two sightlines (to within a sign

change). This is also true for the ALLEGRO algorithm, for which the solution will converge to

the true attitude as long as the initial condition is in the correct hemisphere.

2) Unlike gradient based-methods the ALLEGRO algorithm is non-iterative, which provides a more

numerically stable algorithm.

3) The ALLEGRO algorithm is robust with respect to initial condition errors, which is an advantage

over the linearized least-squares algorithm.

4) The computational burden of the ALLEGRO algorithm is low, since the algorithm is easily

programmable using Equations (30) and (31).

Hardware Simulation

A hardware simulation of a typical spacecraft attitude determination application was undertaken to

demonstrate the performance of the ALLEGRO algorithm. For this simulation, a Northern Telecom 40

channel, 4 RF output STR 2760 unit was used to generate the GPS signals that would be received at a

user specified location and velocity. The signals are then provided directly (i.e., they are not actually

radiated) to a GPS receiver that has been equipped with software tracking algorithms that allow it

operate in space (see Figure 2).

The receiver that was used was a Trimble TANS Vector; which is a 6 channel, 4 RF input

multiplexing receiver that performs 3-axis attitude determination using GPS carrier phase and line of

sight measurements. This receiver was modified in software at Stanford University and NASA's GSFC

14



to allow it to operate in space. This receiver model has flown and operatedsuccessfullyon several

spacecraft,including: REX-II, OAST-Flyer,GANE, Orbcomm,Microlab,andothers.

The simulatedmotion profile was for an actualspacecraft,the Small Satellite Technology Initiative

(SSTI) Lewis satellite, which was launchedon August 22, 1997(seeFigure 3). The orbit parameters

used for the simulation are given in Table 1. This mission actually carried a GPS attitude determination

experiment to assess the performance of the GPS attitude measurements on-orbit. Although the

spacecraft was lost due to a malfunction not related to the GPS experiment shortly after launch, this

motion profile is nonetheless very representative of the types of attitude determination applications that

are found on satellites.

Table 1. SSTI Lewis Orbit parameters

Semimajor axis (a) 6901.137 km

Inclination (i) 97.45 deg

Right Ascension of Ascending Node (RAAN) - 157.1 deg

Eccentricity (e) 0.0001

Pointing profile Earth pointed

Launch date August 22, 1997

The antenna separation distances are 0.61 m, 1.12 m, and 1.07 m, respectively. One antenna (in

baseline 3) is located 0.23 m out of plane (below) the other three antennas. On the spacecraft, the

antennas are mounted on pedestals with ground planes to minimize signal reflections and multipath. For

the simulation, the signal was provided to the GPS receiver without multipath noise. The simulated

SSTI Lewis spacecraft has four GPS antennas that form three baselines. The baseline vector

components in wavelengths are given by

f='l fooo1 f-393]
bl = / 1.64/' / 6.28/' b-3 : / 3.93 /

L-0.12J L-0.17J L-1.23J

(53)

Quantities such as line biases and integer ambiguities are first determined before the attitude

determination algorithms are tested. The GPS raw measurements are processed at 1 Hz over a 40 minute

simulation. A plot of the number of available GPS spacecraft for the simulated run is shown in Figure 4.

During the beginning of the run there are 5 to 6 available spacecraft. At the end of the simulation this

15



dropsdown to about4, which meansthat a degradedperformanceis possible(this also dependson the

geometryof thespacecraft,seeRef. [12] for GeometricDilution of Precision).

For the first simulation the sightlines and baselinesare used to form simulated phasedifference

measurementswith Gaussianmeasurementerrors. This is not a totally realistic simulation; however, it

is useful to quantify the effectivenessof the ALLEGRO algorithm. A plot of the (roll, pitch, yaw)

attitudeerrorswith 3-sigmaoutlinersusingEquation(46) is shownin Figure 5. Clearly, the ALLEGRO

algorithm provides estimates that agree with the optimal standard deviation predictions.

The remaining runs use the actual phase measurements from the receiver. This provides a more

realistic scenario. The linearized least-squares approach using Equations (14)-(16) is also used to

determine the attitude. A plot of the determined attitude using the ALLEGRO and least-squares

algorithms is shown in Figure 6 (the glitch between 10 and 15 minutes is due to receiver outages). The

ALLEGRO attitudes exactly match the least-squares determined attitudes. In order to test the robustness

of the both algorithms, each is started with a poor initial attitude guess. A plot of the attitude errors

during the iteration stage of the least-squares algorithm is shown in Figure 7. Clearly, the least-squares

algorithm does not converge to the correct solution. This is due to the small angle approximation in

Equation (14). The same initial condition is applied to the ALLEGRO algorithm. Since the ALLEGRO

is sequential and non-iterative, convergence is given over sampled intervals. A plot of the attitude errors

is shown in Figure 8. Clearly, the ALLEGRO algorithm converges to the correct solution (after 3

sampling intervals for this initial condition). To further test the robustness of the ALLEGRO algorithm,

a Monte Carlo analysis has been performed using 1000 normalized random initial conditions. A plot of

the convergence rates is shown in Figure 9. In all cases, convergence is achieved within 19 sampling

intervals (most converge within about 10 sampling intervals).

Finally, a test has been performed on the computational efficiency of the ALLEGRO algorithm. The

number of floating point operations (FLOPS) has been evaluated using MATLAB. Both methods

calculate the attitude error covariance as part of their solutions. A comparison with the least-squares

algorithm is slightly misleading, since ALLEGRO is non-iterative. It has been determined that the only

major difference between them is the ALLEGRO algorithm propagates a quaternion model. However,

the computational expense of this propagation is smaller than 75 FLOPS, which is almost an order of

magnitude less than doing a second iteration in the least-squares algorithm (even for only the two

16



baselineand two sightline case). Therefore,theALLEGRO algorithm is computationally comparableor

better thantheleast-squaresalgorithm.

Conclusions

In this paper, a new optimal and efficient algorithm has been developed for attitude determination

using Global Positioning System signals. It has been shown that the standard GPS loss function is

inherently difficult to solve. The new non-iterative algorithm provides sequential estimates using a

recursive one-time step ahead approach. Attitude determination is accomplished by determining the

angular velocity components used to propagate a simple quatemion kinematics model. An attitude error

covariance expression has been derived for the new algorithm. This covariance has been shown to be

equivalent to the optimal covariance, derived from maximum likelihood, if the sample interval is small

enough (which poses no problem for most applications). The algorithm was tested on a hardware

simulator using an actual receiver. Results indicated that the new algorithm is computationally

comparable to a linearized least-squares approach, while providing robustness with respect to initial

conditions error. Therefore, the algorithm is exceptionally suitable for on-board applications.

Appendix: Alternative Covariance Derivation

In this section another approach for the attitude error covariance in the ALLEGRO algorithm is

derived. Linearizing Equation (31) in _dk gives

_k+l = [ 14x4+ -_ ['2( dk)]_k = -qk + -_ _--'(-qk) dk (A1)

where the identity fZ(dk)__ k =FE(_k)d k was used. Next, use A =(13× 3 -[6a x])Atrue, so that

= b i Atrue sj _ __

= a__O. _ 6ar rl_j (A21

where r/o. =[AtrucS _ x]bi and A_/j denotes the true phase difference. Using A_II.-A_/j =vii., and

substituting Equations (A2) and (30) into Equation (AI) yields

[-m n ]-1 m n

-qk+l =[/4x4-2k'-2(6_k)]qk l_[. ,|_-"_'_"_o._2r] fiT[

j=l .J i=l j=!

(A3)
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Now, using the fact that the true quatemion (q_-)can be represented by

yields the following approximation to within first-order

(A4)

F m n 1 -I

^ _ 1=_ -2 T -o,,
L i=I j=l _I i=I j=l

Defining &/= _ - _" gives the following quaternion error covariance

F,,, ,, l -I
1 = _ -2 T

Pqql = _-E(qkl/E Eo'/y r/_yr//y.[ ET(__k ) (A6)

LS=l j=l j

Therefore, using the same principles for the attitude error covadance derivation in Ref. [8] and from the

analogy in Equations (46) through (51) gives

1,,_ E;<,,:[,,____l__,__r[,,___]_
i=1 j=l

which is again the same expression as in Equations (13) and (52).

(A7)
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